

Department of Family and Community Medicine

# Flexibility, More than Muscles!

Scott M. Eberly, MD CMD

October 9, 2025



#### **Frontmatter**

- Practicing internist for 26 years.
- Current focus is nursing home work serving 8 local nursing homes as an assistant professor in the Department of Family and Community Medicine.
- I have no financial disclosures regarding any of the information presented today.
- Medical information will be presented today but not medical advice. Please see your personal provider for personal recommendations.

### **Objectives**

- Understand the importance of flexibility in human function.
- Identify specific areas of emphasis for efforts toward flexibility.
- Understand potential benefits toward achieving this flexibility.



### Ocham's Razor

- William of Ockham (c. 1287– 1347), an English Franciscan friar and scholastic philosopher, is credited with the principle.
- The Latin phrase commonly associated with Ockham's razor is

"Entia non sunt multiplicanda praeter necessitatem," meaning "entities should not be multiplied beyond necessity"









### Hickam's dictum

- John Bamber Hickam, MD (c. 1914-1970), Chair of Medicine Indiana University 1958-1970.
- This counter-principle states,
   "Patients can have as many
   diseases as they damn well
   please," emphasizing the need to
   consider multiple diagnoses
   when clinically appropriate.





### The Problem: The Disability Gap

- Average healthy adjusted life expectancy: 66 years.
- Average life span. 80 years.
- Disability Gap. 14 years on average.

### Who lives in a nursing home?

- Dementia and Stroke 46%
- Heart failure
- Parkinson's disease
- Osteoarthritis
- Diabetes mellitus
  - -Increase from 4.3 to 11.4% over 1993-2005.

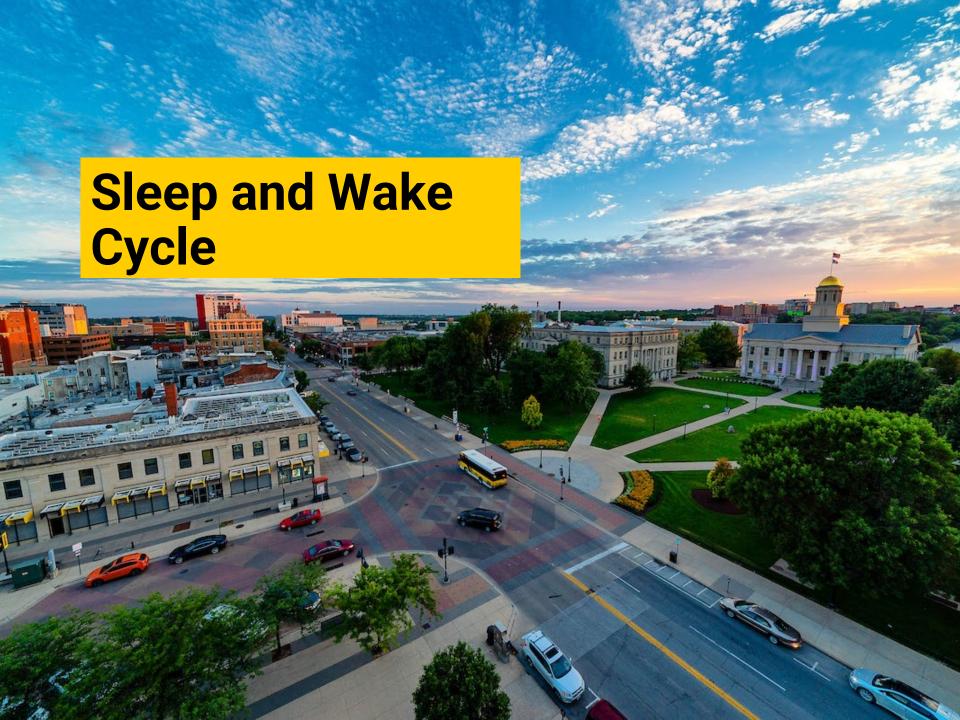


## Bimodal Nature of Human physiology and experience.

#### Phase I

- 1. Sleep
- 2. Feeding
- 3. Exercise
- 4. Community

#### Phase II


- 1. Awake
- 2. Fasting
- 3. Rest
- 4. Isolation



### **Flexibility**

- Ability to move fluidly from one state to another fully participating in each state.
- The opposite of flexibility is inflexibility resulting in chronic stress of the chronically adopted state.
- Acute stress is beneficial.
- Chronic stress wears down the system.





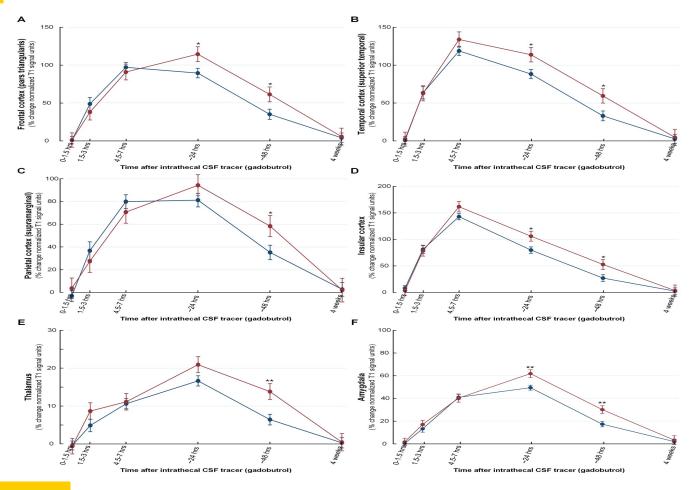
### Healthy Sleep Guidelines...and reality.

- Average sleep duration for average adult is 7-9 hours per night.
- American Academy of Sleep Medicine and the Sleep Research Society recommend adults aged 18-60 obtain 7 or more hours of sleep per night.
- The National Sleep Foundation also recommends 7-8 hours for adults > 65 years old.
- 28-37% of adults report sleeping less than 7 hours per night. Morb Mortal Wkly Rep. 2022 Mar 11;71(10):393.



### Implications of disordered sleep.

#### Too Much (> 9 hours / night)


- Increase risk of metabolic syndrome and obesity.
- Increase risk of cardiovascular disease
- Increase depression and cognitive impairment.
- Higher risk of all cause mortality.

#### **Too Little (< 7 hours / night)**

- Increase risk of hypertension, coronary artery disease and stroke.
- Increased risk of obesity and metabolic syndrome.
- 3. Increased risk of depression, anxiety, and cognitive impairment.
- Immune disfunction
- 5. Higher all risk mortality.



Per Kristian Eide, Vegard Vinje, Are Hugo Pripp, Kent-Andre Mardal, Geir Ringstad, **Sleep deprivation impairs molecular clearance from the human brain**, *Brain*, Volume 144, Issue 3, March 2021, Pages 863–874.





### **Good Sleep Hygiene**

- Consistent sleep schedule
- Cool, dark, quiet bedroom reserved for sleep and intimate activities only.
- Avoid caffeine, nicotine and alcohol in the evening.
- Limit screen time use before bed.
- Regular daytime exercise
- Light exposure during the day.
- If unable to sleep get up for a quiet activity and return to bed when drowsy maintaining sleep schedule.





### Healthy metabolic parameters

- BMI 18.5-25
- Fat percentage for men 13-24%
- Fat percentage for women 20-33%
- Hgb a1c < 5.7 for adults
- Fasting glucose < 100</li>
- Triglycerides to HDL ratio < 2</li>



### Metabolic syndrome

| Component       | NCEP ATP III                                              | IDF                                                                           | WHO                                                                                 |
|-----------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Central obesity | Waist<br>circumference ≥40<br>in (men), ≥35 in<br>(women) | Waist<br>circumference ≥37<br>in (men), ≥32<br>in(women)<br>(ethnic-specific) | Waist-to-hip ratio<br>>0.90 (men), >0.85<br>(women) or BMI<br>>30 kg/m <sup>2</sup> |
| Triglycerides   | ≥150 mg/dL                                                | ≥150 mg/dL                                                                    | ≥150 mg/dL                                                                          |
| HDL cholesterol | <40 mg/dL (men),<br><50 mg/dL<br>(women)                  | <40 mg/dL (men),<br><50 mg/dL<br>(women)                                      | <35 mg/dL (men),<br><39 mg/dL<br>(women)                                            |
| Blood pressure  | ≥130/85 mmHg                                              | ≥130/85 mmHg                                                                  | ≥140/90 mmHg                                                                        |
| Fasting glucose | ≥100 mg/dL                                                | ≥100 mg/dL                                                                    | ≥110 mg/dL or insulin resistance                                                    |



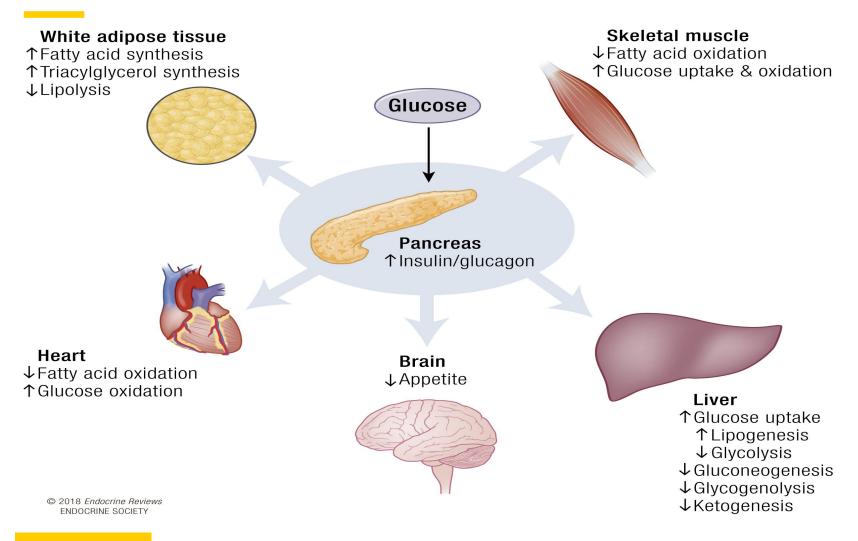
### **Prevalence of Metabolic Syndrome**

| Age group   | Prevalence (%) |
|-------------|----------------|
| <40 years   | 17.5           |
| 40-49 years | 29.7           |
| 50-59 years | 37.5           |
| 60-69 years | 44.4           |
| ≥70 years   | 47.0           |



### Morbidity of Metabolic Syndrome

- **Stroke**: 1.5 2.3 fold increased risk of stroke.
- <u>Cardiovascular disease</u>: 1.5 2 fold increase in risk of coronary artery disease, heart failure, sudden death.
- <u>Diabetic complications</u>: 2-3 fold higher risk of CKD and 1.5 – fold higher risk of severe diabetic retinopathy and neuropathy.
- <u>Dementia risk</u>: Mostly vascular dementia at similar rates to above between 1 and 2.5 fold increase.



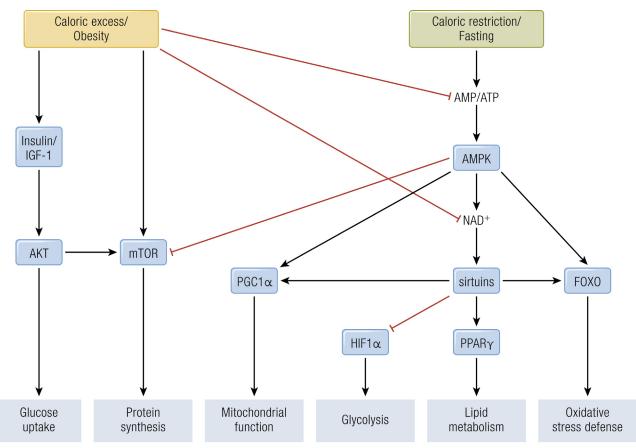

### Hormonal regulation of satiety

| Hormone | Source   | Macronutrient response                     | Satiety effect |
|---------|----------|--------------------------------------------|----------------|
| GLP-1   | L-cells  | Protein > carbohydrate > fat               | High           |
| PYY     | L-cells  | Protein > carbohydrate > fat               | High           |
| Ghrelin | Stomach  | Protein > carbohydrate > fat (suppression) | High           |
| Insulin | Pancreas | Carbohydrate > protein > fat               | Moderate       |
| Amylin  | Pancreas | Carbohydrate > protein > fat               | Moderate       |
| ССК     | I-cells  | Protein > fat > carbohydrate               | Moderate       |



#### **Fed Hormonal State**






### **Fasting and Fed Hormonal State**

| HORMONE        | FASTING STATE                                                              | FED STATE                                                                                     |
|----------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Insulin        | Low; suppresses hepatic glucose output; promotes lipolysis and ketogenesis | High; promotes glucose uptake, glycogen synthesis, lipogenesis; suppresses lipolysis <u>1</u> |
| Glucagon       | High; stimulates glycogenolysis, gluconeogenesis, ketogenesis              | Low; suppressed by insulin and incretins <u>1</u>                                             |
| Ghrelin        | High; stimulates appetite and GH secretion                                 | Low; suppressed by nutrient intake <u>3</u>                                                   |
| Leptin         | Low; increases appetite, reduces energy expenditure                        | High; suppresses appetite, increases energy expenditure <u>2</u>                              |
| Cortisol       | Elevated; promotes gluconeogenesis, proteolysis, lipolysis                 | Lower; reduced catabolic activity <u>1</u>                                                    |
| Growth hormone | Elevated; promotes lipolysis, reduces insulin sensitivity                  | Lower; reduced lipolysis, increased insulin sensitivity <u>1</u>                              |
| Catecholamines | Elevated; stimulate glycogenolysis, lipolysis                              | Lower; reduced sympathetic activity <u>1</u>                                                  |
| GLP-1          | Low; minimal insulinotropic effect                                         | High; enhances insulin secretion, suppresses glucagon, slows gastric emptying <u>1</u>        |
| GIP            | Low; minimal insulinotropic effect                                         | High; enhances insulin secretion <u>1</u>                                                     |
| FGF21          | Elevated; promotes fatty acid oxidation, ketogenesis                       | Lower; reduced lipid oxidation <u>1</u>                                                       |
|                |                                                                            |                                                                                               |



### **Biochemical activity of Feeding and Fasting**



© 2018 Endocrine Reviews ENDOCRINE SOCIETY



### Fasting vs. Starvation Hormone Makeup

| Hormone               | Fasting (12-48 h) | Starvation (>48 h) |
|-----------------------|-------------------|--------------------|
| Insulin               | ↓ (low-normal)    | ↓ (very low)       |
| Glucagon              | ↑ (moderate)      | ↑↑ (high)          |
| Cortisol              | ↔/↑ (mild)        | ↑↑ (high)          |
| Growth hormone        | ↑ (pulsatile)     | ↑↑ (high)          |
| Catecholamines        | ↑ (mild)          | ↑↑ (high)          |
| Thyroid hormones      | ↔/↓ (mild)        |                    |
| Leptin                | ↓ (moderate)      | ↓ (very low)       |
| Ghrelin               | ↑ (transient)     | ↓(suppressed)      |
| Reproductive hormones | ↔/↓ (mild)        | ↓ (hypogonadism)   |
| ADH                   | ↔/↑ (mild)        | ↑↑ (high)          |



## Quick Math Problem: How much excess energy do I have stored?

#### 1. Calculate lbs. of current fat

Current weight x measured fat percentage = current amount of fat 210 lbs x 27% fat = 56.7 lbs of fat

#### 2. Calculate lbs. of ideal fat.

Ideal weight x Ideal fat percentage = ideal amount of fat

180 lbs x 22% fat = 39.6 lbs of fat

#### 3. Calculate energy excess.

17.1 lbs of excess fat
3500 calories per pound of fat
59,850 excess calories
119 days of a 500 calorie deficit
Or could sustain a 30 day fast?

#### Conclusion

- Most have significant excess energy.
- We need to allow fasting hormones to work



### **Time Restricted Eating**

- Consult your physician to consider significant changes.
- Most people will consider one meal per day or two meals per day in a 6–8-hour window.
- Depending on your metabolic flexibility it may take a few weeks to start burning fat. If you are unable to burn fat, initially you will feel poorly during the fasting phase. This will improve over time.
- Once in the fasting state you will make ketones as you metabolize fat instead of glucose.
- Watch for undereating.



### Composition of a Ketogenic diet

| Macronutrient | Percentage of total energy intake | Absolute intake (typical range) |
|---------------|-----------------------------------|---------------------------------|
| Fat           | 70-80%                            | 150-200 g/day                   |
| Protein       | 10-20%                            | 60-100 g/day                    |
| Carbohydrate  | <10%                              | 20-50 g/day                     |



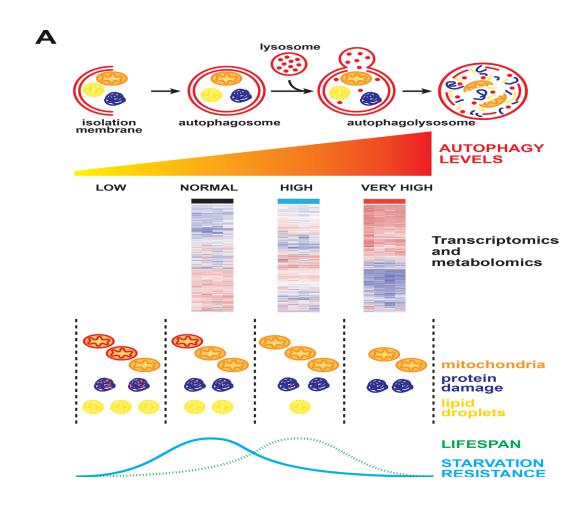
### How do you measure ketones?

| Method                 | Ketone body<br>measured | Accuracy | Invasiveness       | Clinical<br>utility                 | Limitations                     |
|------------------------|-------------------------|----------|--------------------|-------------------------------------|---------------------------------|
| Blood ketone<br>meters | β-hydroxybutyrate       | High     | Invasive           | DKA diagnosis and monitoring        | Finger-prick, cost              |
| Urine dipsticks        | Acetoacetate            | Moderate | Non-invasive       | Screening,<br>dietary<br>monitoring | Delayed, false<br>results       |
| Breath analyzers       | Acetone                 | Moderate | Non-invasive       | Screening,<br>dietary<br>monitoring | Variability, limited validation |
| Laboratory assays      | β-hydroxybutyrate       | High     | Invasive           | Precise<br>quantification           | Cost, availability              |
| СКМ                    | β-hydroxybutyrate       | Emerging | Minimally invasive | Real-time<br>monitoring             | Limited<br>availability         |



## Difference between physiologic ketosis and diabetic ketoacidosis.

| Physiological condition           | β-Hydroxybutyrate concentration in plasma (range in mmol/l) |
|-----------------------------------|-------------------------------------------------------------|
| Normal circadian variation        | 0.1–0.4                                                     |
| After prolonged exercise          | 0.3–2                                                       |
| After 1–2 days of fasting         | 1–2                                                         |
| After 2–3 weeks of fasting        | 5–7                                                         |
| After 1–3 weeks of ketogenic diet | 0.5–5                                                       |
| During diabetic ketoacidosis      | 3–25                                                        |




### **Autophagy and GKI**

- Definition: Autophagy is a lysosome-dependent intracellular degradative pathway that recycles cytoplasmic components to maintain homeostasis and support survival during nutrient or energy stress.
- The glucose-ketone index (GKI) is a clinical metric defined as the ratio of blood glucose (mmol/L) to blood ketones (mmol/L), reflecting the balance between glycolysis and ketolysis; a lower GKI indicates greater reliance on ketone metabolism and is associated with enhanced autophagy



### Role of Autophagy





## Benefits of Time restricted eating and fasting.

- Improved insulin sensitivity and glucose levels.
- Supports weight loss
- Reverses Metabolic Syndrome
- Improved mental clarity.
- Improved mitochondrial function
- Autophagy
- More time in the day





### **Optimal Exercise Guidelines**

| Activity type              | Recommendation                              |
|----------------------------|---------------------------------------------|
| Moderate-intensity aerobic | 150-300 minutes per week                    |
| Vigorous-intensity aerobic | 75–150 minutes per week                     |
| Muscle-strengthening       | ≥2 days per week                            |
| Sedentary behavior         | Limit sedentary time; replace with activity |
| Older adults (≥65 years)   | Multicomponent activity ≥3 days per week    |



### Hormonal effect of low intensity exercise.

- Reduced baseline cortisol: Reflects lower chronic stress and improved HPA axis regulation.
- Improved insulin sensitivity: Sustained glycemic control and metabolic health.
- Modest anabolic support: Small increases in testosterone, GH, and IGF-1 aid muscle maintenance and recovery.
- Enhanced immune function: Lower chronic inflammation and better immune regulation.



#### **Health Benefits of Exercise**

- Reduced Risk: Cardiovascular disease, Type 2 Diabetes Mellitus, Certain Cancers, All cause mortality.
- Improved Health: Mental health, cognitive function, quality of life.
- Enhanced performance: Improved physical performance, balance, reduced risk of falls.





### **Optimal Community**

- Circles of Support
  - Circle of Intimacy (3- 5 people)
  - Circle of Friendship social activities but not intimate details.
  - Circle of Participation- connected by location, work, spiritual community, gyms but do not get together in other locations.
  - Circle of Exchange- transactional relationships. Checker at the grocery store, doctor, accountant.
- It takes on average 200 hours, or two-hour coffee dates twice a week for a year to develop a close friendship.



### **Components of Healthy Relationship**

- Unconditional Love
- Mutual Support
- Loyalty and Respect
- Growth
- Encouragement and Accountability

### **Cycles of Healthy Relationship**

- Togetherness
- Trial
- Apology and Acceptance or Repentance and Forgiveness
- Reconciliation
- Deeper togetherness

#### **Health Benefits of an Intact Social Network**

| Pathway           | Positive effects of friendship and community                                                                     | Negative effects of isolation and loneliness                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Neuroendocrine    | <ul><li>Reduced cortisol</li><li>Increased oxytocin</li><li>Balanced testosterone</li></ul>                      | <ul><li>Elevated cortisol</li><li>Reduced oxytocin</li><li>Hormonal imbalance</li></ul>                                 |
| Inflammatory      | - Lower IL-6, CRP, TNF-α<br>- Improved immune function                                                           | - Increased inflammation<br>- Immune dysregulation                                                                      |
| Behavioral        | <ul><li>Increased physical activity</li><li>Healthy diet</li><li>Better sleep</li></ul>                          | <ul><li>Sedentary behavior</li><li>Poor diet</li><li>Sleep disturbances</li></ul>                                       |
| Clinical outcomes | <ul><li>Lower insulin resistance</li><li>Reduced metabolic syndrome</li><li>Lower type 2 diabetes risk</li></ul> | <ul><li>Increased insulin resistance</li><li>Higher metabolic syndrome</li><li>Increased type 2 diabetes risk</li></ul> |



### **Summary**

- 1. Our bodies and minds are made for cycles of life. Look for the rhythms of stress and recovery.
- 2. Acute stress builds.
- 3. Chronic stress destroys.
- 4. Stay flexible and take as many as possible along for the ride.





TRAIL of Johnson County and Athletico Physical Therapy

## Thank you!

Scott Eberly, MD CMD Assistant Clinical Professor Department of Family and Community Medicine

scott-eberly@uiowa.edu





## **Questions?**

Scott Eberly, MD CMD Assistant Clinical Professor Department of Family and Community Medicine

scott-eberly@uiowa.edu

uiowa.edu

##